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1.  INTRODUCTION | OF POOR QUALJ;’TY

The'utility of numerical methods for predicting transonic flows

" over wings and bodies is by now well established. The computer pro-

gram FLO22, based on a method presented at the 1973 IFIP Symposium on

Computing Methods [1], has actually been widely used to calculate the

aerodynanic performance of wings of transport aircraft. Provided that

a correction is made for the displacement effect of the viscous bound-

ary layer, this code has been found to give predictions which are

accurate enough to serve as a useful design guide [2]. The salient

features of the cpde are:

(1) the use of a potential flow approximation to the equations of
motion

(2) the use of upwind differencing in the supersonic zone to simulate
the region of dependence of the flow, and to prevent the appear-
ance of expansion shock waves which would violate the entropy
inequality

(3) the use of a relaxation procedure based on an artificial time
dependent eqguation to solve the difference equations

{(4) the use of a curvilinear coordinate system generated by a sequence
of simple transformations to -produce coordinate surfaces following
the wing shape. |
The use of the potential flow approximation greatly reduces the

amount of computation required. Since the resulting flow is irrotation-

al, it is consistent to approximate shock waves by discontinuities

across which entropy is conserved. This approximation has been found

quite satisfactory in practice, since the shock waves generated by air-

planes cruising at subsonic speeds are generally quite weak. In fact

the appearance of stronger shock waves marks the onset of drag rise,

which sets an upper bound on the cruising speed. In order to obtain a

unique solution to the potential flow equation, it is necessary to

* Phis work was supported by the Office of Naval Research under Contract
N00014-77-C-0032, and also by NASA under Grants NGR 33-016-167 and
NGR 33-016-201. The calculations were performed at the ZRDA Mathe-
matics and Computing Laboratory, under Contract EY-76-~C-02-3077.*000.
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1.  INTRODUCTION OF POOR QUALITY

The utility of numerical methods for predicting transonic flows
*over wings and bodies is by now well established. The computer pro-
gram FLO22, based on a method presented at the 1973 IFIP Symposium on
Computing Methods [l1], has actually been widely used to calculate the
aerodynamic performance of wings of transport aircraft. Provided that
a correction is made for the displacement effect of the viscous bound-
ary layer, this code has been found to give predictions which are
accurate enough to serve as a useful design guide [2]. The salient
features of the code are:
(1) the use of a potential flow approximation to the equations of
motion
(2) the use of upwind differencing in the supersonic zone to simulate
the region of dependence of the flow, and to prevent the appear-
; ance of expansion shock waves which would violate the entropy
; inequality
(3)‘ the use of a relaxation procedure based on an artificial time
dependent equation to solve the difference egquations
| (4) the use of a curvilinear coordinate system generated by a sequence
of simple transformations to produce coordinate surfaces following
the wing saape.

The use of the potential flow approximation greatly reduces the
amount of computation required. Since the resulting flow is irrotation-
al, it is consistent to approximate shock waves by discontinuities

: across which entropy is conserved. This approximation has been found
quite satisfactory in practice, since the shock waves generated by air-
planes cruising at subsonic speeds are generally quite weak. In fact
the appearance of stronger shock waves marks the onset of drag rise,
which sets an upper bound on the cruising speed. 1In order to obtain a
unique solution to the potential flow equation, it is necessary to

* This work was supported by the Office of Naval Research under Contract
N00014-77-C-0032, and also by NASA under Grants NGR 33-016-167 and
NGR 33-016-201. The calculations were performed at the ZRDA Mathe-
matics and Computing Laboratory, under Contract EY-76-C-02-3077.%*000.
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exclude expansion shock waves, coxrresponding to the condition that
entropy can only increase, The use of upwind differencing in the
supersonic zone, first introdured by Murman and Cole [3), has been
found an effective way to enforce the entropy condition. The non-
linear cquations gencrated by the discrete approximation are not easy

- to solve. The use of a relaxation process modeled on an artificial

time dependent equation [4] has been found to give reliable and
acceptably fast convergence.

The main disadvantages of the scheme used in FL0O22 are the use of
nonconscrvative difference formulas, which result in a failure to sat-
isfy consexvation of mass across shock waves, and the difficulty of
finding suitable transformations of coordinates to permit the treatment
of more complex geometric configurations. The method to be described
here is an attempt to overcome these shortcomings, while retaining the
successful features of the previous method. The basic idea is to use
a discrete approximation which directly represents a balance of the
mass flow through small volume elements. This leads to a relatively
simple treatment of the potential flow equation in conservation form.
The volume elements are distorted cubes generated by local trilinear
transformations defined by the element vertices. Elements of this kind
can be packed around any reasonably smooth configuration. The subsonic
difference formulas can conveniently be derived from the Bateman varia-
tional principle [5]. A directional bias is introduced in the super-
sonic zone by adding an artificial viscosity, which is constructed in
such a way as to produce an effective switch to upwind differencing.
This serves to prevent the appearance of expansion shock waves. The
artificial viscosity has a divergence form, so that the conservation
form of the equations is preserved by the difference scheme, and proper
shock jump relations, consistent with the isentropic approximation,
are satisfied in the limit as the mesh width is decreased to zero [6].
The most promising alternative to the use of artificial viscosity to
enforce the entropy condition appears to be the optimal control method
proposed by Glowinski and Pironneau [7]1, in which the entropy condition
is represented by penalty functions.

ORIGINVAL PAGE s
2. FORMULATION OF THE EQUATIONS O POOR QUALITY

The flow is assumed to be isentropic and to satisfy the equations
of potential flow. Let g be the velocity vector, with magnitude q ,

and P the density. Then the potential flow equation can bhe written in
conservation form as
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(1) Velpg) = 0
where g is the gradient of the prtential
(2) q = ¢

Let a be the local.speced of sound, and M the Mach number g/a. Also let
M, r d, =1 and p, = 3 be the Mach number, speed and density of the
uniform flow at infinity. Then the local density is given by the
formula

_1 1/(y-1)
(3) p = {l + 3'_2: mi[l - qz}}
where vy is the ratio of specific heats, and the pressure and speed of
sound follow from the relations

Y oyl
2
(4) p = ..-..p_ﬁ. ; a® = .E.._.i..._..
Tf‘lm M,

Equation (1) is hyperbolic in supersonic flow (M > 1) and elliptic
in subsoeonic flow, and shock waves will generally appear 1f there is a
region of supersonic flow. The shock jump conditions are
{(a}) continuity of ¢ implying continuity of the tangential velocity

component
(b} continuity of pg, v where d, is the normal velocity componént
{c) +the entropy condition that q, decreases through the shock.
Under the assumption of isentropic flow, conditions (a) and (b) imply
that the normal component of momentum is not conserved. The resulting
momentum deficiency causes the appearance of a drag force, which is
an approximation to the wave drag [8].

The boundary condition at the body is

(5) q = 22=0

To obtain a unique lifting solution we also impose the Kutta condition
that the flow leaves the trailing edge smoothly with equal velocities
along the upper and lower surfaces. The resulting spanwise variation
"in the circulation T = g ds around each section of the wing causes

a vortex sheet to be shed from the trailing edge. The vortex sheet
will be convected with the flow,and roll up along its side edges. In
the calculations this will be ignored and the vortex sheet will be

assumed to coincide with a coordinate surfare. The conditions applied




at the sheet arce then
{a) tLhe jump ' in the potential is constant along lines parallel to
the free stream .
(b) the normal velocity component a, is continuous through the shock.
According to an analysis of the asymptotic behavier of the potential
in the far field [9]), ¢ approaches the potential of the undisturbed
uniform flow except in the Trefftz plane far downstream, where it
satisfies the two dimensional Laplace equation for the flow induced by
the vortex sheet.
In a finite domain R with boundary S equations (1)-(5) are equiva-
lent to the Bateman variational principle that

(6) I = f p &R

R
is stationary. In fact according to equations (3) and (4), a varia-
tion &8¢ causes a variation '

ép = - pq * dq
Thus

6T = - f pgev 8¢ AR
R

i1

[ 66 vt ar - [ 600 g as
R 5
and the boundary terms vanish if é¢ = 0 or g, = 0.

NUMERICAL SCHEME

The Bateman tariational principle will be used to derive differ-
ence formulas through the introduction of a discrete approximation to
the integral I defined by equation (6). This leads to a central diff-
erence scheme. When such a scheme is used to compute the flow past a
profile with fore and aft symmetry, such as an ellipse, the fore and
aft symmetry is preserved in the solution, and expansion shocks will
appear in transonic flow. Thus any scheme which is not desymmetrized
in some way is restricted to subsonic flow. The basic difference
formulas will therefore be modified by the addition of artificial vis-
cosity to introduce the desired directional bias in the supersonic
zone. ‘

In order to represent the Bateman integral, the region in which

the flow is to be computed is divided into distorted cubic cells,



generated from cubes by separate transformations between local
coordinates X,Y¥,% and Cartesian cooxdinates x,y,z, as illustrated
in Figure 1.

X',Y,Z }{,Y,Z

Figure 1

The vertices of the cells define the computétional mesh, and subscripts
i,j,k will be used to denote the value of a quantity at a mesh point.
In order to reduce the amount of computation a simple one point inte-
gration scheme will be used, in which the contribution of each cell

to the integral will be evaluated as the pressure at the cell center
(defined as the point mapped from the center of the cube in the X,¥,Z
cooxrdinate system) multiplied by the cell volume, OQuantitites eval-
uated at the cell centers will be denoted by subscripts i+l/2, j+1/2,
k+l/2. Averaging and difference operators will be introduced through
the notation

n_of

i3,k =35 UF

L :
3 + £

jq+l/2’jpk i"l/z,j;k]

axfi,j,k = £ - £

i+1/2,%,k i-1/2,%,k

It will also be convenient to use notations such as

(=4
Fh
i

Gx(ﬁxf) ‘ GXYf 6X(6Yf)
Numbering the wvertices of a particular cell from 1 to 8 as in

Figure 1, the vertices in the local cooxdinates are assumed to be at

= 4+ X =+ & =4 : ' .si P
Xi = 5 Yi Tli 5 Z =+ 5 - If XisY;02; are the Cartesian coordi
nates of the ith vertex, the local mapping is then defined by the

trilincar form

et g i ke 2 e s
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- T N 7 1,
(7) x = 8 .E 20t Xg%) (5 v ¥) U 4 o2%)
i=1l
with sinilar formulas for y, z. The potential is assumed to have a
similar form inside the cecll

: ANPS RS,
. b, (F + x;%) (G + vyv) (7 + 2,9)

(8) ¢ = 8

i

{ R ]ss)

These formulas preserve the continuity of x,y,z and ¢ at the cell
boundarics because the mappings in each cell rcduce to the same bilin-
eay form at the common face. At the cell centexr the derivatives of
the transformation can be evaluated by formulas such as ,

i 1
oxg =g (g moxg g moxg o xg = xg kg - oxg) = g, Sy

Similarly it follows from ecqguation (8) that

b = WygSx® o Oxy T WpSxy® 1 byyg = Oxypt

In order to evaluate the contribuation of each cell to the Bateman
integral it is now necessary to exwpxess the pressure and cell volume in
terms of the local derivatives of the mapping and the potential. Let H
be the transformation matrix '

X, Xy xz_]
(9) H= Yy Yy Yy
%9,

and let h be the determinant of H. Then the metric tensor is defined
by the matrix

T
(1.0) - G=HH
Also the contravariant velocity components are U,V,W where

vl ¢x

* - _1 A
(11) Ay =G ¢Y )
W ¢Z '

Then
a® = Uy + Vo, + WY,
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and the vardation in p due to a variation &¢ is

‘ 2

6p = = pS(~F-) = ~plusy, » Ve, wat,hz]
According to the one point integration scheme, the contribution from

the cell centered at i+l/2, j+1/2, k+1/2 is the volume of the cell,

given by the determinant hi+l/2,j+l/2,k+lf2 , multipliced by the pres-

sure Pia1/2,541/2 , k+1/2" On setling

T
o= 0
i,i.k
and colwecting the contributions from the 8 cells with a common vertoex
i,j,k, we then obtain the formula

{12) ‘ uyzﬁx(phu) + uzxﬁy(phVJ o+ uxyaz(phw) = 0

at each interior mesh point. Along the boundary there are only 4
cells adjacent to cach mesh point,and equation (12) is correspondingly
nodified.

Equation (12) is a discrote approximation to the conscrvation law

=¥

(13) : = oh) + § o) + 2o (ohm)

which can be derived directly from eguation (1) by using the tensor
formula for the divergonce operator [9]. In fack we can derive equa-
tion (12) by representing a flux balance through a sct of auxiliary
cells, cach of which is generated fvom a cube joining the cehters of 8
primary cells, as illustrated in Figure 2.

Flux balance cell
X,V.,2 N, Y, %

FPigure 2
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In Lth ancrprcLaLlon (phU)141/2 S41/2, k+1/2 is an approx1mat10n to

the flux across the face X = ¢ of that part of the sccondary cell which
lies in the primary cell A in Pigure 2. The boundary condition (5)
reduces to U= 0, V=0or W=0 on cell faces which coincide with the
boundary. The flux balance is then represented with secondary cells
bounded on one or more faces by the body surface, as illustrated in
Figure 3.

*

Flux halance cell

X,Y:2 ' X,Y,2

. Figure 3

" The lumping error introduced by the one point integration scheme
now appears as an error introduced by calculating p, h, U, V, W at the
corners of each secondary cell, instead of averaging these guantities
over the cell faces. If the vertices of the primary cells are‘gener-
ated by a global mapping smooth enough to allow Tayloxr series expan-
sions of x,y,z as functions of X,¥,%, then the contributions to this
error from adjacent primary cells offset each other, with the result
that equation (12) approximates equation (13) with a second ordexr local
discretization error.

The one point integration scheme has another disadvantage.however,
which can be secen from the following simple example. Setting h = 1,
p = 1, egquation (12) reduces in the two dimensional case to

+ H.

(HyySxyx * Hyydyyld = 0

which is the rotated Laplacian scheme
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The odd and even points are decoupled, 50 that high freguency oscil-
lations in which ¢ = 1 at odd points and -1l at cven points are admitted
by the scheme. To overcome this difficulty we can shift the point of
cvaluation of the flux ¢X across the side AB in Figure 4 from A towaxds
the center of the side by adding & compensating term - E¢XY'

il iy
! I

! B, Flux at C is
I '

Cp —>
IR B () + €9
—_ A LPX A XY
Figure 4

The addition of similar terms on all faces produces the formula

(hyySxx + MyxSyy = E8xyxy)e = 0

which reduces to the usual 5 point second order accurate formula when
e = 1/2, and to the 9 point fourth order accurate formula when e = 1/3,
Similarly in the discrete approximation to equation (13) we want
to prevent excessive spatial averaging in the approximation of
¢xx‘¢!¥’¢zz‘ Allowing for the dependence of p on ¢X’¢Y'¢Z , the coef-
ficients of ¢XX'¢IY'¢

%7 in equation (13) are

= ph(g't - v?/a?)
oh(g22 - v%/a?)
ohig33 - w/a?)

. By
By

A

Z

l. In order to compensate equation

where gij are the elements of G~
(12),we can use these cocfficients to determine the magnitude of the
terms which should be added to shift the locations at which ¢x,¢y,¢z
are effectively evaluated in calculating the fluxes across each face,

“for examéle, € Ax“25XY¢ to shift ¢x in the Y direction. Collecting
the contributions from each of the 8 primary cells surrounding a

mesh point, we obtain the following formulas. Let

-
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Opy = (B + Ayduydyyd
with shﬁja? formulas for QYZ R sz , and let

=,(A + A + A )6

Qxyz xy2?

Then the final compensated eguation is

(14) Hyy, kfphU) + uZhdy(phV) + uXYGZ(phW)
8

=

= ey 8y Quyt HybypQupt HySp Qpu= 5 SyyiOyyy) =

where 0 < € < 1/2. In practice the value ¢ = 1/2 has been used.

It remains to add the artificial viscosity required to desymmetrize

the scheme in the supersonif zone. Instead of eguation (13) we shall
satisfy the modified conservation law

(phU+P) + %_ (phv+Q) + %E (phW+R) = 0

n:ln:

where the added fluxes P,Q,R are proportional to the cell widths in

the physical domain, with the result that the correct conservation law
is recovered in the limit as the eell width is reduced to zero. The
artificial'viscosity is designed to produce an effective switch to
upwind differencing in the supersonic zone. Presuming the distribution
of mesh points to be smooth, it is constructed in the following manner,
First we introduce the switching function

: a2
K = h max {0, [l - —2-']}
- q
and we construct P by the formula
0 b

A 2 -
PEuy [U SxxT UVhyyixy™ WUpzxasz¢

and ﬁ,ﬁ by similar formulas. Then
B, if U > 0
= i,J.k .
i+l/2,4,k -
i+l,9,k
with similar shifts for Q, R. PFinally, equation (14) is modified by
the addition of '

P
if U <0

GXP + GYQ + :SZR

g~ v pa
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Since u = 0 when q < a, P,Q,R vanish in {the subsonic zone. In the
superzonic zone they approxinate -ulUléyp ' -ulvlﬁyp , ~nln|s,p.
It may be verified [11]) thal the coefficients of the third deriva-

tives of the potential such as ¢ introduced by

xax’ Pynx’ Yzxx l
P,Q,R are the same as in the artificial viscosity generated by the
rofated difference scheme which has been previously used in three ‘
dimensional transonic flow calculations [1,2,4]. 1
finally the nonlincar equations gencrated by this discretization

process are solvad by a generalized reluviation method which is derived '
by entedding the steady state equation in an artificial time dependent |

equation. Thus we solve a discrete approximation to

== {phU+P) + %~ (phv+Q) -+ (phW+R)

m|cv

= abyp t Bbygt Yépp + Sby .

1
1
i
|
1
where the coefficients «,8,y are chosen to make the flow direction 1
timelike, as in the steady state equation, and § controls the damp-
ing [41. |
i
|
1

4, CONSTRUCTION OF THE MESH

The formulation of the artificial viscosity presupposes a smooth
distrisution of cells. Also the one point integration scheme will
cause a loss of accuracy if the mesh is not smooth. It is important,
therefore, to use a reasonably smooth mesh. This is most easily

1
:
l
accomplished by using global mappings to generate the mesh points. ' i
All other steps, such as the transformation of the equations of motion, l
are then taken over by the numerical scheme. f
Swept wing calculations have been performed on a mesh generated i
by a sheared parabolic coordinate system, which has bern found to give |
good results with earliexr methods [1,2,4]. First, we introduce
parabolic coordinates in planes containing the wing section by the

transformation

- - . T 1/2
X+ 1¥ = {[x - xy(2) + iy - y,(2))1/t(2)}
Z =z .
where z is the spanwise coordinate, x,(z) .and y,(z} define a singular

line just inside the lecading edgc, and L(z) is a scallng factor which

e s e gy befm s s e L et g
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can be used to control the number of cells covering the wing.

- PR P ~

Pigure 5

The cffect of this transformation is to unwrap the wing to form a

shallow bume ¥ = £{X, %), as illustrated in Pigure 5. Then we use a
shearing ' »;;s3formation

[~

X=X, Y=Y - 8(X,2) , % =

to map the wing to the surface Y = 0. The mesh is now constructed by
the reverse sequence of transformations from a rectangular grid in the
X:Y,2 cooxdinate system. The vortex sheet trailing behind the wing is
assumed to coincide with the coordinate surface leaving the trailing
edge. This mesh can be modificd to treat wing eylinder combinations
by first mapping the cylinder to a vertical slit by a Joukowsky trans-
formation, as illustrated in Figure 6, and then using the same seguence
of transformations to generate a sheared parabolic coordinate arounc
the wing projecting from the slit.

—
Front view of : {
wing-cylinder combination Cylinder mapped to vertical slit

F;gure 6
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An alternative mesh generating scheme for wing fuselage combina-
tions [12] starts by introducing cylindrical coordinates as illustrated

in Figure 7.

0 = n/2

b = ~7/2
Cylindrical coordinate system for

wing body combination

Figure 7

" In sach cylindrical surface the wing section then appears as a profile
in a channel bounded by the intexrsection of the cylinder with the
plane of symmetxy at 8 = + n/2. This configuration can be mapped to
a channel with a bump on the upper wall, as illustrated in Figure 8,

by the transformation

o = log (1 - cosh(z))

6 = /2
0

_-C\Q_//E

—_ o .
=O \,__ B
B o ty—
A )
B = -w/2 9 = /2 , 6 = -1/2

Figure 8

Finally the bump is removed by a shearing transformation.

T T




5. RESULTS

Two examplaes of numerical caleulations are presented in this sec-
tion to illustrate the capability of the finite voluiw method. The
first mesh generating procedure proposced in Scction 4, the sheared
parabolic coordinate system, was used in these calculations, both of
which were performed on a scquence of three progressively finer meshes.
Ater tho calculation on each of the first two meshes, the number of
inkervals was doubled in ecach coordinate direction and the interpolated
rosult was used as the starting point for the calculation on the new
mesh. The £fine mesh contained 160 intexvals in the zhordwise X dirvec-
tion, 16 intexrvals in the normal ¥ direction, and 32 intexvals in the
Spanwise % dlrection, for a total of 81,920 ceclls. 100 relaxation
cycles were used on cach mesh. Such a calculation takes about 15 min-~
ultes on a CDC 7600.

The first example is a calculation of the flow past the ONERA MG
wing, for which experimental data is available [13]. The result is
displayed in Figure 9. Separate pressure distributions are shown fox
stations at 20, 45, 65 and 95 percent of the somispan. Scction lift
and drag cocfficients CL and CD were obtained by integrating the pres-
sure coefficient ¢p over the profile. The critical pressure cocffici-
ent at which the flow has sonic speed is marked by a horizontal line
on the pressure axis. Although the caleculation did not inelude a
boundary layer coxrection, it can be scen that the agreement with the
exparimental data is guite good. The triangular shock pattexn is
clearly visible in the three dimensional plot of the prossure distri-
bution (Figure 92£). The front shock, emanating from the leading cdge
at the wing rool, merges with the rear shock about threc quarters of
the way out across the span. The sccond example is indicative of the
level of geometric complexity which can be treated with the existing
code. The result is displayed in Figure 1.0. It is for a Douglas DC 10
wing mounted on a cylindexr in a low mid position. The true DC 10 con-
figuration is not exactly modeled, because the code does not provide
for a wing root f£illet.

Thase resuits confirm the promise of the now method. It appears
that it can be used to treat configurations of more or less arbitrary
" complexity, subject to limits sel by the powar of the available comput-
ers. The eoxtension to new configurations is primarily a matter of
devising mesh generating schemes, since the internal computations are
essentinlly independent of the configuration, apart. from the identi-
fication of which elements are the boundary elements.
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